数据仓库架构设计的一点概念

数据仓库 专栏收录该内容
2 篇文章 0 订阅

1、数据仓库所处环节

在一个成体系、结构化的数据应用场景下,数据和处理有四个层次: 操作层、数据仓库层、部门/数据集市层、个体层。

这里写图片描述

操作层

操作层是指为具体业务提供实时响应的各个业务系统,比如常见的订单系统、ERP、用户中心等等具体业务系统,这些系统中的数据一般都是存入关系型数据库。它们是数据的来源。

数据仓库

数据仓库收集操作层各个业务系统中的数据,进行统一格式、统一计量单位,规整有序地组织在一起,为数据分析、数据挖掘等需求提供数据支持。

数据集市

部门/数据集市层是各个部门根据自己的数据分析需求,从数据仓库中抽取自己部门所关心的数据报表。

个体层

个体层中的不同角色个体有读取不同数据的权限。

2、数据仓库概念

数据仓库是一个面向主题的、集成的、非易失的、随时间变化的,用来支持管理人员决策的数据集合,数据仓库中包含了粒度化的企业数据。

面向主题的

数据仓库不同于传统的操作型系统,传统的操作型系统中的数据是围绕功能进行组织的,而数据仓库是针对于某一个主题进行分析数据用的,比如针对于销售主题、针对于客户主题等等。

集成的

不同产品或者系统中的数据是分散在各自系统中的,并且格式不一致、计量单位不一致。而数据仓库必须将多个分散的数据统一为一致的、无歧义的数据格式后,并解决了命名冲突、计量单位不一致等问题,然后将数据整合在一起,才能称这个数据仓库是集成的。

随时间变化的

数据仓库要体现出数据随时间变化的情况,并且可以反映在过去某一个时间点上数据是什么样子的,也就是随时间变化的含义。而传统的操作型系统,只能保存当前数据,体现当前的情况。

非易失的

非易失是指:数据一旦进入数据仓库,就不能再被改变了,当在操作型系统中把数据改变后,再进入数据仓库就会产生新的记录。这样数据仓库就保留了数据变化的轨迹。

3、一般架构

这里写图片描述

1、 STAGE层

业务系统的数据接入到数据仓库时,首先将业务数据仓储到STAGE层中,Stage层作为一个临时缓冲区,并屏蔽对业务系统的干扰。
STAGE层中的表结构和数据定义一般与业务系统保持一致。
Stage中的数据可以每次全量接入也可以每次增量接入,一般都有会数据老化的机制,不用长期保存。
Stage的数据不会对外部开放。

2、 ODS层

ODS才是数据仓库真正意义上的基础数据,数据是被清洗过的,ODS层的数据是定义统一的、可以体现历史的、被长期保存的数据。
ODS层的数据粒度与Stage层数据粒度是一致的。
Stage层中的数据是完全形式的源数据,需要进行清洗才能进入ODS层,所以说ODS层是数据仓库格式规整的基础数据,为上层服务。

3、 MDS层

MDS是数据仓库中间层,数据是以主题域划分的,并根据业务进行数据关联形成宽表,但是不对数据进行聚合处理,MDS层数据为数据仓库的上层的统计、分析、挖掘和应用提供直接支持。
MDS层的数据也可以执行一定的老化策略。

4、 ADS层

ADS层是数据仓库的应用层,一般以业务线或者部门划分库。这一层可以为各个业务线创建一个数据库。
ADS层的数据是基于MDS层数据生成的业务报表数据,可以直接作为数据仓库的输出导出到外部的操作型系统中(MySQL、MSSQL、Hbase、Elasticsearch等)。

5、 DIM层

DIM层是数据仓库数据中,各层公用的维度数据。比如:省市县数据。

6、 ETL调度系统

对接入数据仓库的数据进行清洗、数据仓库各层间数据流转都需要大量的程序任务来操作,这些任务一般都是定时的,并且之间都是有前后依赖关系的,为了能保证任务的有序执行,就需要一个ETL调度系统来管理。

7、 元数据管理系统

描述数据的数据叫做元数据,元数据信息一般包括表名、表描述信息、所在数据库、表结构、存储位置等基本信息,另外还有表之间的血缘关系信息、每天的增量信息、表结构修改记录信息等等。
数据仓库中有大量的表,元数据管理系统就是用来收集、存储、查询数据仓库中元数据的工具,这个系统为数据使用方提供了极大的便利。

4、设计的两个重要问题

1、 粒度

粒度是指数据仓库中数据单元的细节程度或综合程度的级别。粒度会深刻地影响数据量的大小以及数据仓库的查询能力。
细节程度越高,粒度级别就越低,查询就越灵活;相反,细节程度越低,粒度级别就越高。
双重粒度:
双重粒度是存储两个粒度下的数据:一个是全量的细节数据;另一个是轻度综合的数据。

2、 分区

数据分区是指把数据分散到可独立处理的分离物理单元中去。恰当地进行分区可以给数据仓库带来多个方面的好处:
(1) 数据装载 (2) 数据访问 (3) 数据存档 (4) 数据删除 (5) 数据监控 (6) 数据存储

  • 3
    点赞
  • 0
    评论
  • 18
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
随着人们对大型数据系统研究、管理、维护等方面的深刻识认和不断完善,在总结、丰富、集中多行企业信息的经验之后,为数据仓库给出了更为精确的定义,即“数据仓库是在企业管理和决策中面向主题的、集成的、与时间相关的、不可修改的数据集合”。<br><br>数据仓库并没有严格的数学理论基础,也没有成熟的基本模式,且更偏向于工程,具有强烈的工程性。因此,在技术上人们习惯于从工作过程等方面来分析,并按其关键技术部份分为数据的抽取、存储与管理以及数据的表现等三个基本方面。 <br><br>  ⑴数据的抽取:数据的抽取是数据进入仓库的入口。由于数据仓库是一个独立的数据环境,它需要通过抽取过程将数据从联机事务处理系统、外部数据源、脱机的数据存储介质中导入到数据仓库。数据抽取在技术上主要涉及互连、复制、增量、转换、调度和监控等方面。数据仓库中的数据并不要求与联机事务处理系统保持实时同步,因此数据抽取可以定时进行,但多个抽取操作执行的时间、相互的顺序、成败对数据仓库中信息的有效性则至关重要。 <br><br>  ⑵存储和管理:数据仓库的真正关键是数据的存储和管理。数据仓库的组织管理方式决定了它有别于传统数据库,同时也决定了其对外部数据的表现形式。要决定采用什么产品和技术来建立数据仓库的核心,则需要从数据仓库的技术特点着手分析。 <br><br>  ⑶数据的表现:数据表现实际上相当于数据仓库的门面,其性能主要集中在多维分析、数理统计和数据挖掘方面。而多维分析又是数据仓库的重要表现形式,近几年来由于互联网的发展,使得多维分析领域的工具和产品更加注重提供基于Web前端联机分析界面,而不仅仅是在网上发布数据。 <br><br>  提到数据仓库,人们难免会想到仅有一字之差的数据库,那么,数据仓库和我们经常提到的数据库有哪些区别呢?为什么要使用数据仓库呢?<br><br>从数据库到数据仓库 <br>  市场需求是技术发展的源动力。在数据库应用的早期,计算机系统所处理的是从无到有的问题,是传统手工业务自动化的问题。例如银行的储蓄系统、电信的计费系统,它们都属于典型的联机事务处理系统。在当时,一个企业可以简单地通过拥有联机事务处理的计算机系统而获得强大的市场竞争力。记得在80年代末,北京工商银行率先推出了全市个人储蓄通存通兑业务,广大市民便将先前就近存于不同银行的存款一并取出而存入了工商银行。这便是通过联机事务处理系统而获得市场优势的案例。其次,当时单位容量的联机存储介质比现在昂贵得多,相对于市场竞争的压力,将大量的历史业务数据长时间联机保存去用于分析显然是过于奢侈了。因此,联机事务处理系统只涉及当前数据,系统积累下的历史业务数据往往被转储到脱机的环境中。此外,在计算机系统应用的早期,还没有积累大量的历史数据可供统计与分析。从而,联机事务处理成为整个80年代直到90年代初数据库应用的主流。 <br><br>  然而,应用在不断地进步,当联机事务处理系统应用到一定阶段的时候,企业家们便发现单靠拥有联机事务处理系统已经不足以获得市场竞争的优势;他们需要对其自身业务的运作以及整个市场相关行业的态势进行分析,从而做出有利的决策。同样就拿北京各银行的储蓄业务来说,如今各家都拥有了联网的储蓄系统,再要获得市场竞争的优势,就需要在决策上下功夫,例如在业务密集地区增设自助网点、推出有针对性(如:某类职业圈、某年龄段)的储蓄服务计划。这些决策需要对大量的业务数据包括历史业务数据进行分析才能得到,而这种基于业务数据的决策分析,我们把它称之为联机分析处理。如果说传统联机事务处理强调的是更新数据库——向数据库中添加信息,那么联机分析处理就是要从数据库中获取信息、利用信息。因此,著名的数据仓库专家Ralph Kimball写道:“我们花了20多年的时间将数据放入数据库,如今是该将它们拿出来的时候了。” <br><br>  事实上,将大量的业务数据应用于分析和统计原本是一个非常简单和自然的想法。但在实际的操作中,人们却发现要获得有用的信息并非想象的那么容易:第一,所有联机事务处理强调的是数据更新处理性能和系统的可靠性,并不关心数据查询的方便与快捷;联机分析和事务处理对系统的要求不同,同一个数据库在理论上难以做到两全;第二,业务数据往往被存放于分散的异构环境中,不易统一查询访问,而且还有大量的历史数据处于脱机状态,形同虚设;第三,业务数据的模式是针对事务处理系统而设计的,数据的格式和描述方式并不适合非计算机专业人员进行业务上的分析和统计。于是,有人感叹:20年前查询不到数据是因为数据太少了,而今天查询不到数据是因为数据太多了。针对这一问题,人们专门为业务的统计分析建立一个数据中心,它的数据可以从联机的事务处理系统、异构的外部数据源、脱机的历史业务数据中得到;它是一个联机的系统,专门为分析统计和决策支持应用服务,通过它可满足决策支持和联机分析应用所要求的一切。这个数据中心就叫做数据仓库。如果需要给数据仓库一个定义的话,那么可以把它看作一个作为决策支持系统和联机分析应用数据源的结构化数据环境。数据仓库所要研究和解决的问题就是从数据库中获取信息。 <br><br>  那么数据仓库与数据库(主要指关系数据库)又是什么关系呢?回想当初, 人们固守封闭式系统是出于对事务处理的偏爱, 人们选择关系数据库是为了方便地获得信息。我们只要翻开 C.J. Date博士的经典之作《An Introduction to Database Systems》便会发现:今天数据仓库所要提供的正是当年关系数据库要所倡导的。然而,“成也萧何,败也萧何”,由于关系数据库系统在联机事务处理应用中获得的巨大成功,使得人们已不知不觉将它划归为事务处理的范畴;过多地关注于事务处理能力的提高,使得关系数据库在面对联机分析应用时又显得“老革命遇到新问题”——今天的数据仓库对关系数据库的联机分析能力提出了更高的要求,采用普通关系型数据库作为数据仓库在功能和性能上都是不够的,它们必须有专门的改进。因此,数据仓库与数据库的区别不仅仅是应用的方法和目的上的,同时也涉及产品和配置。 <br><br>  以辩证的眼光来看,数据仓库的兴起实际上是数据管理的一种回归,是螺旋式的上升。今天的数据库就好比当年的层次数据库和网型数据库,它们面向事务处理;今天的数据仓库就好比是当年的关系数据库,它针对联机分析。所不同的是,今天的数据仓库不必再为联机事务处理的特性而奔忙,由于技术的专业化,它可更专心于联机分析领域的发展和探索。 <br><br>  从厂商的角度看,经过长期发展,联机事务处理系统的市场至90年代中期出现饱和迹象,其增长速度明显减慢。这导致各大数据库厂商的传统业务增长面临严峻挑战,寻求新的业务增长点成为他们的当务之急。数据仓库的兴起无疑为数据库产品创造了巨大的市场,它成为20世纪末到21世纪初数据库市场的一个新的增长点。因此,数据仓库这个词儿打一开始便伴随着轰轰烈烈的市场炒作。对于广大用户来说,只有从自身应用需求出发,破除技术和概念的神秘性,奉行“拿来主义”,避虚就实,密切关注技术发展的方向,方可获得满意的产品、解决方案和经济效益。 <br><br>  总之,数据仓库并非是一个仅仅存储数据的简单信息库,因为这实际上与传统数据库没有两样。数据仓库实际上是一个“以大型数据管理信息系统为基础的、附加在这个数据库系统之上的、存储了从企业所有业务数据库中获取的综合数据的、并能利用这些综合数据为用户提供经过处理后的有用信息的应用系统”。如果说传统数据库系统的重点与要求是快速、准确、安全、可靠地将数据存进数据库中的话,那么数据仓库的重点与要求就是能够准确、安全、可靠地从数据库中取出数据,经过加工转换成有规律信息之后,再供管理人员进行分析使用。<br>
相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页

打赏

鸣宇淳

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值